PHP-Fusion Coding Style PHP-Fusion version 7.02.00

PHP-Fusion Coding Coding Style

PHP-Fusion Version: 7.02.00

Table of Contents

Overview 3
License 3
Scope 3
Note 3

Naming Convention 4
Classes 4
Folders 4
Filenames 4
Functions 4
Variables 5
Constants 5

Variables 6
PHP Code Demarcation 6
String Literals 6
Variable Substitution 6
String Concatenation 6
Numerically Indexed Arrays 6
Associative Arrays 7

Classes and functions 8
Class Declaration 8
Class Member Variables 8
Function and Method Declaration 8
Function and Method Usage 9

Control Statements 10

if / else / elseif 10

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Switch 11
For 11
Comments 12
Header comment 12
Inline comments 12

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Overview

License

This document is based upon the Zend Framework’s Coding Standard Manual. Licensed under New
BSD License and copyrights are applicable to portions of Zend Framework. Copyright © 2005-
Zend Technologies Inc. (http://www.zend.com)

Scope

This document provides guidelines for code formatting and documentation to individuals and
teams contributing to PHP-Fusion. Many developers using PHP-Fusion have also found these
coding standards useful because their code's style remains consistent with all PHP-Fusion code. It
is also worth noting that it requires significant effort to fully specify coding standards.

Note

Sometimes developers consider the establishment of a standard more important than what that
standard actually suggests at the most detailed level of design. The guidelines in PHP-Fusion's
coding standards capture practices that have worked well on the PHP-Fusion project. You may
modify these standards or use them as is in accordance with the terms on Zend Framework’s

License Page.

Topics covered in PHP-Fusion's coding standards include:

Naming Conventions
Variables

Classes and Functions
Control Statements
Comments

uhwNeE

Coding standards are important in any development project, but they are particularly important
when many developers are working on the same project. Coding standards help ensure that the
code is high quality, has fewer bugs, and can be easily maintained.

http://framework.zend.com/license
http://framework.zend.com/license
http://framework.zend.com/license
http://framework.zend.com/license

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Naming Convention

Classes

Class names may only contain alphanumeric characters. Numbers are permitted in class names but
are discouraged in most cases. Underscores are not permitted.

If a class name is comprised of more than one word, the first letter of each new word, including
the first work, must be capitalised. Successive capitalised letters are not allowed, e.g. a class
"MYClass" is not allowed while "MyClass" is acceptable.

Folders

Only alphanumeric characters and underscores are permitted. Spaces are strictly prohibited. New
words are separated by underscores and the first letter of each new word, including the first work,
must be lower case.

Filenames

Only alphanumeric characters and underscores are permitted. Spaces are strictly prohibited. New
words are separated by underscores and the first letter of each new word, including the first work,
must be lower case, with the notable exception of class files.

Any file that contains PHP code should end with the extension '
show acceptable filenames for PHP-Fusion classes:

".php". The following examples

e includes/MyClass.class.php
e infusions/my_infusion/MyClass.class.php

File names must map to the class names as described above with the correct capital letters for the
class, without the .class at the end. Only one class is permitted per class file. Class files can only be
placed in the includes folder in PHP-Fusion root or inside an infusion.

Following example show other acceptable file names:

o myfile.php
e infusions/my_infusion/myfile.php

Functions
Function names may only contain alphanumeric characters. Underscores are not permitted.
Numbers are permitted in function names but are discouraged in most cases.

Function names must always start with a lowercase letter. When a function name consists of more
than one word, the first letter of each new word must be capitalised. This is commonly called
"camelCase" formatting.

Verbosity is generally encouraged. Function names should be as verbose as is practical to fully
describe their purpose and behaviour.

These are examples of acceptable names for functions:
o filterInput()

o getElementByld()
o widgetFactory()

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

For object-oriented programming, accessors for instance or static variables should always be
prefixed with "is ", "get" or "set". In implementing design patterns, such as the singleton or factory
patterns, the name of the method should contain the pattern name where practical to more

thoroughly describe behaviour.

For methods on objects that are declared with the "private" or "protected" modifier, the first
character of the method name must be an underscore. This is the only acceptable application of an
underscore in a method name. Methods declared "public" should never contain an underscore.

Functions in the global scope (a.k.a "floating functions") are permitted but discouraged in most
cases. Consider wrapping these functions in a static class.

Variables
Variable names may only contain alphanumeric characters. Underscores are not permitted.
Numbers are permitted in variable names but are discouraged in most cases.

For instance variables that are declared with the "private" or "protected" modifier, the first
character of the variable name must be a single underscore. This is the only acceptable application
of an underscore in a variable name. Member variables declared "public" should never start with
an underscore.

As with function names (see section 3.3) variable names must always start with a lowercase letter
and follow the "camelCaps" capitalisation convention.

Verbosity is generally encouraged. Variables should always be as verbose as practical to describe
the data that the developer intends to store in them. Terse variable names such as "S$i", Sii, Sn and
"Sm" are discouraged for all but the smallest loop contexts. If a loop contains more than 20 lines of
code, the index variables should have more descriptive names.

Variables names like Sfoo, Sbar or Stest are not permitted.
Constants
Constants may contain both alphanumeric characters and underscores. Numbers are permitted in

constant names.

All letters used in a constant name must be capitalised, while all words in a constant name must be
separated by underscore characters. For example:

MY_CONSTANT is permitted but MYCONSTANT is not.

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Variables

PHP Code Demarcation
PHP code must always be delimited by the full-form, standard PHP tags:

1. <?php
2.
3. 2>

Short tags or not adding ?> at the end of a PHP file are never allowed.

String Literals
When a string is literal (contains no variable substitutions), "double quotes" should always be used
to demarcate the string:

1. Sa = "Example String";

Variable Substitution
Variable substitution is permitted using this form:

1. S$greeting = "Hello .Sname. ", welcome back!";

For consistency, this form is not permitted:
1. Sgreeting = "Hello $name, welcome back!";

String Concatenation
Strings must be concatenated using the "." operator. A space must never be added before or after
the ".":

1. S$Scompany = "PHP- Fusion"."Solutions";
It is not necessary concatenating strings with the "." operator when breaking a the statement into
multiple line. In these cases, each successive line should be padded with white space such that the

start of the new line is aligned under or passed the "=" operator:

1. $sqgl = "SELECT user_id, user_ name FROM ".DB_ USERS."
2. WHERE user level = '103'
3. ORDER BY user name ASC";

Numerically Indexed Arrays
Negative numbers are not permitted as indices.

An indexed array may start with any non-negative number, however all base indices besides 0 are
discouraged.

When declaring indexed arrays with the Array function, a trailing space must be added after each
comma delimiter to improve readability:

1. $sampleArray = array(l, 2, 3, "PHP-Fusion", "Solutions");

http://www.php.net/array
http://www.php.net/array

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

It is permitted to declare multi-line indexed arrays using the "array" construct. The initial array
item must begin on the following line. It should be padded at one indentation level greater than
the line containing the array declaration, and all successive lines should have the same
indentation; the closing paren should be on a line by itself at the same indentation level as the line
containing the array declaration:

1. S$sampleArray = array(

2. , 2, 3, "PHP-Fusion", "Solutions",
3. $a, $b, Sc,

4. 56.44, $d,

5.)i

We require using a trailing comma for the last item in the array; this minimises the impact of
adding new items on successive lines, and helps to ensure no parse errors occur due to a missing
comma.

Associative Arrays

When declaring associative arrays with the Array construct, the initial array item must begin on
the following line. It should be padded at one indentation level greater than the line containing the
array declaration, and all successive lines should have the same indentation; the closing parent
should be on a line by itself at the same indentation level as the line containing the array
declaration. For readability, the various "=>" assignment operators should be padded such that
they align.

1. S$sampleArray = array(

2. "firstKey" => "firstValue",
3. "secondKey" => "secondValue",
4.);

We require using a trailing comma for the last item in the array; this minimises the impact of
adding new items on successive lines, and helps to ensure no parse errors occur due to a missing
comma.

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Classes and functions

Class Declaration

Classes must be named according to PHP-Fusion's naming conventions. The brace should always be
written on the same line as the class name. All code in a class must be indented with one tab and
only one class is permitted in each PHP file.

Placing additional code in class files is permitted but discouraged. In such files, two blank lines
must separate the class from any additional PHP code in the class file, the only exception is
additional classes extending the main class.

The following is an example of an acceptable class declaration:

1. class SampleClass {

2. // all contents of class

3. // must be indented by one tab
4. 3}

Classes that extend other classes or which implement interfaces should declare their
dependencies on the same line when possible.

1. class SampleClass extends FooAbstract {

2. }

Class Member Variables

Member variables must be named according to PHP-Fusion's variable naming conventions. Any
variables declared in a class must be listed at the top of the class, above the declaration of any
methods.

The var construct is not permitted. Member variables always declare their visibility by using one of
the private, protected, or public modifiers. Giving access to member variables directly by declaring
them as public is permitted but discouraged in favour of accessor methods (is, set & get).

Function and Method Declaration

Functions must be named according to PHP-Fusion's function naming conventions. Methods inside
classes must always declare their visibility by using one of the private, protected, or public
modifiers. As with classes, the brace should always be written on the same line as the function
name. Space between the function name and the opening parenthesis for the arguments is not
permitted.

Functions in the global scope are strongly discouraged.
The following is an example of an acceptable function declaration in a class:

1. class MyClass {

2 // Method description here

3 public function myFunction() {

4. // all contents of function

5 // must be indented by one tab
6

7

}

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

In cases where the argument list exceeds the maximum line length, you may introduce line breaks.
Additional arguments to the function or method must be indented one additional level beyond the
function or method name. A line break should then occur before the closing argument parent,
which should then be placed on the same line as the opening brace of the function or method with
one space separating the two, and at the same indentation level as the function or method
declaration. The following is an example of one such situation:

1. class MyClass {

2. // Method description here

3 public function myFunction($argl, S$arg2, $arg3,

4. Sarg4, Sarg5, S$arg6) {
5 // all contents of function

6 // must be indented one tab

7

8

}

The return value must not be enclosed in parentheses. This can hinder readability, in additional to
breaking code if a method is later changed to return by reference.

1. class MyClass {

2 // WRONG

3 public function myFunction() {
4 (S$this->value);

5. }

6.

7 // RIGHT

8 public function myFunction() {
9. Sthis->value;

10. }

11. }

Function and Method Usage
Function arguments should be separated by a single trailing space after the comma delimiter. The
following is an example of an acceptable invocation of a function that takes three arguments:

1. threeArguments(1l, 2, 3);

Call-time pass-by-reference is strictly prohibited. See the function declarations section for the
proper way to pass function arguments by-reference.

In passing arrays as arguments to a function, the function call may include the "array" hint and may
be split into multiple lines to improve readability. In such cases, the normal guidelines for writing

arrays still apply:

1. threeArguments(array(l, 2, 3), 2, 3);

1. threeArguments(array(

2. , 2, 3, 'PHP-Fusion', 'Solutions',
3. $a, $b, $c,

4. 56.44, $d,

5.

)r 2, 3);

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Control Statements

if / else / elseif
Control statements based on the if and elseif constructs must have a single space before the
opening parenthesis of the conditional and a single space after the closing parenthesis.

Within the conditional statements between the parentheses, operators must be separated by
spaces for readability. Inner parentheses are encouraged to improve logical grouping for larger
conditional expressions.

The opening brace is written on the same line as the conditional statement. The closing brace is
always written on its own line. Any content within the braces must be indented using one tab.

(sa !'= 2) {
2. Sa = 2;
3. }

If the conditional statement causes the line length to exceed the maximum line length and has
several clauses, you may break the conditional into multiple lines. In such a case, break the line
prior to a logic operator, and pad the line such that it aligns under the first character of the
conditional clause. The closing parent in the conditional will then be placed on a line with the
opening brace, with one space separating the two, at an indentation level equivalent to the
opening control statement.

((sa == $b)
2. && ($b == $c)
3. || (MyClass::myFunction() == $d)
4.) {
5. Sa = $d;
6.

The intention of this latter declaration format is to prevent issues when adding or removing clauses
from the conditional during later revisions.

For "if" statements that include "elseif" or "else", the formatting conventions are similar to the "if"
construct. The following examples demonstrate proper formatting for "if" statements with "else"
and/or "elseif" constructs:

(sa !'= 2) {
2. Sa = 2;
3. } {
4. Sa = 7;
5. }

(sa !'= 2) {
2. Sa = 2;
3. } ($a == 3) {
4. Sa = 4;
5. } {
6. Sa = 7;
7. }

10

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

(($a == $b)
2. && ($b == $c)
3. || (MyClass::myFunction() == $d)
4.) {
5. Sa = $d;
6. } ((Sa != $b)
7. || ($b != $c)
8.) {
9. Sa = Sc;
10. } {
11. Sa = Sb;
12.}

PHP allows statements to be written without braces in some circumstances. This coding standard
makes no differentiation - All "if", "elseif" or "else" statements must use braces.

Switch
Control statements written with the "switch" statement must have a single space before the

opening parenthesis of the conditional statement and after the closing parenthesis.

All content within the "switch" statement must be indented using one tab. Content under each
"case" statement must be indented using an additional one tab.

($numPeople) {

OO0 WN

}

The construct default should never be omitted from a switch statement.

Note: It is sometimes useful to write a case statement which falls through to the next case by not
including a break or return within that case. To distinguish these cases from bugs, any case
statement where break or return are omitted should contain a comment indicating that the break
was intentionally omitted.

For
Control statements written with the "for" statement must have a single space before the opening

parenthesis of the conditional statement and after the closing parenthesis.

The opening brace is written on the same line as the "for" statement. The closing brace is always
written on its own line. Any content within the braces must be indented using one tab.

($1 = 0; $i < 5; $i++) {
2. // content goes here

11

PHP-Fusion Coding Style PHP-Fusion version 7.02.00

Comments

Header comment
All files must at the line below <?php add the following header comment:

W oo NG WN R
+

PHP-Fusion Content Management System
Copyright (C) 2002 - 2010 Nick Jones

http://www.php-fusion.co.uk/

Filename: filename.php
Author: My Name

This program is released as free software under the
Affero GPL license. You can redistribute it and/or
modify it under the terms of this license which you
can read by viewing the included agpl.txt or online
at www.gnu.org/licenses/agpl.html. Removal of this
copyright header is strictly prohibited without
written permission from the original author(s).

After this you are allowed to add any code

Inline comments
All inline comments are added using two slashes "//" and one space after the slashes:

1. // My comment goes here

12

http://www.php-fusion.co.uk
http://www.php-fusion.co.uk
http://www.gnu.org/licenses/agpl.html
http://www.gnu.org/licenses/agpl.html

